Little Sand Lake 29-0150-00 HUBBARD COUNTY

Lake Water Quality

Summary

Little Sand Lake is located six miles northeast of Park Rapids, Minnesota. It covers 386 acres and has a long, narrow shape.

Little Sand Lake has two inlets and one outlet. The main inlet enters from Ida Lake under County Road 7. The second inlet flows in from Gilmore Lake. The outlet is located near the middle of the east shoreline. The Sand River flows out of the lake and heads south into Round Lake. From Round Lake, the water flows into Clausens Lake and Shallow Lake, and eventually into Lake Belle Taine.

Water quality data have been collected on Little Sand Lake since 1988 (Table 3). These data show that the lake is at the oligotrophic, which is characterized by clear water throughout the summer and excellent recreational opportunities.

The Little Sand Lake Association is involved in many activities, including water quality monitoring. They are also a member of the Hubbard County Coalition of Lake Associations (COLA).

Table 1. Little Sand Lake location and key physical characteristics.

Location Data		Physical Charac	teristics
MN Lake ID:	29-0150-00	Surface area (acres):	386
County:	Hubbard	Littoral area (acres):	149
Ecoregion:	Northern Lakes & Forests	% Littoral area:	38%
Major Drainage Basin:	Upper Mississippi River	Max depth (ft), (m):	80, 24.4
Latitude/Longitude:	46.99055556 / -94.93166667	Inlets:	2
Invasive Species:	None	Outlets:	1
		Public Accesses:	2

Table 2: Availability of data and an observation of the quantity of sample points.

Data Availability	
Transparency data	Excellent data set through the Citizens Lake Monitoring Program.
Chemical data	Excellent data set through the RMB Lab Lakes Program.
Inlet/Outlet data	No inlet or outlet data exist for this lake.
Recommendations	For recommendations refer to page 19.

Lake Map

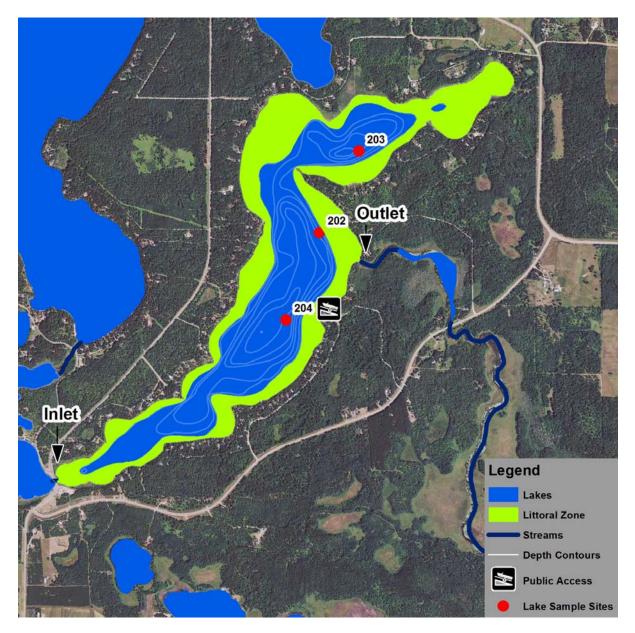


Figure 1. Map of Little Sand Lake with 2010 aerial imagery and illustrations of sample site locations, inlets and outlets, and public access points. The pink areas in the lake illustrate the littoral zone, where the sunlight can usually reach the lake bottom allowing aquatic plants to grow.

Table 3. Monitoring programs and associated monitoring sites. Monitoring programs include the Minnesota Pollution Control Agency (MPCA), Citizens Lake Monitoring Program (CLMP) and RMB Environmental Laboratories Lakes Program (RMBEL).

Lake Site	Depth (ft)	Monitoring Programs
202	35	MPCA: 1989; CLMP: 1988
203	55	MPCA: 1989; CLMP: 1989-1992, 1994-2006
204	65	MPCA: 1989, 1991; CLMP: 1987-2011; RMBEL: 1997-2011

Average Water Quality Statistics

The information below describes available chemical data for Little Sand Lake through 2011 (site 204). The data set is limited, and all parameters, with the exception of total phosphorus, chlorophyll *a* and secchi depth, are means for just 1989 and 1991 MPCA data.

Minnesota is divided into seven ecoregions based on land use, vegetation, precipitation and geology. The MPCA has developed a way to determine the "average range" of water quality expected for lakes in each ecoregion. For more information on ecoregions and expected water quality ranges, see page 11.

Parameter	Mean	Ecoregion Range ¹	Impaired Waters Standard ²	Interpretation
Total phosphorus (ug/L)	10	14 - 27	> 30	
³ Chlorophyll <i>a</i> (ug/L)	2	4 - 10	> 9	Results are better than the
Chlorophyll a max (ug/L)	6	<15		expected range for the ecoregion.
Secchi depth (ft)	21.6	7.5 - 15	< 6.5	
Dissolved oxygen	Dimitic see page 8			Dissolved oxygen depth profiles show that the deep areas of the lake are anoxic in late summer.
Total Kjeldahl Nitrogen (mg/L)	0.38	0.40 - 0.75		Indicates insufficient nitrogen to support summer nitrogen-induced algae blooms.
Alkalinity (mg/L)	147	40 - 140		Indicates a low sensitivity to acid rain and a good buffering capacity.
Color (Pt-Co Units)	7.8	10 - 35		Indicates very clear water with little to no tannins (brown stain).
рН	8.6	7.2 - 8.3		Characteristic of a hard water lake. Lake water with pH less than 6.5 can affect fish spawning and the solubility of metals in the water.
Chloride (mg/L)	1.7	0.6 - 1.2		Slightly above the ecoregion average but still considered low level.
Total Suspended Solids (mg/L)	1.8	<1 - 2		Within the ecoregion average range.
Specific Conductance (umhos/cm)	218	50 - 250		Within the ecoregion average range.
Total Nitrogen :Total Phosphorus	31:1	25:1 – 35:1		Indicates the lake is phosphorus limited, which means that algae growth is limited by the amount of phosphorus in the lake.

Table 4. Water quality means compared to ecoregion ranges and impaired waters standard.

¹The ecoregion range is the 25th-75th percentile of summer means from ecoregion reference lakes

²For further information regarding the Impaired Waters Assessment program, refer to <u>http://www.pca.state.mn.us/water/tmdl/index.html</u>

³Chlorophyll *a* measurements have been corrected for pheophytin

Units: 1 mg/L (ppm) = 1,000 ug/L (ppb)

Water Quality Characteristics - Historical Means and Ranges

Parameters	Primary Site 204	Site 203
Total Phosphorus Mean (ug/L):	10	
Total Phosphorus Min:	4	
Total Phosphorus Max:	28	
Number of Observations:	80	
Chlorophyll <i>a</i> Mean (ug/L):	2	
Chlorophyll-a Min:	<1	
Chlorophyll-a Max:	6	
Number of Observations:	79	
Secchi Depth Mean (ft):	21.6	19.0
Secchi Depth Min:	10.0	10.5
Secchi Depth Max:	40.0	33.0
Number of Observations:	434	189

Table 5. Water quality means and ranges for primary sites, 1997-2011.

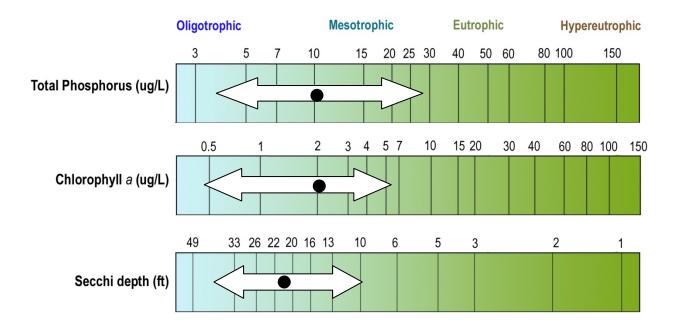


Figure 2. Little Sand Lake total phosphorus, chlorophyll *a* and transparency historical ranges. The arrow represents the range and the black dot represents the historical mean (Primary Site 204). Figure adapted after Moore and Thornton, [Ed.]. 1988. Lake and Reservoir Restoration Guidance Manual. (Doc. No. EPA 440/5-88-002)

Transparency (Secchi Depth)

Transparency is how easily light can pass through a substance. In lakes it is how deep sunlight penetrates through the water. Plants and algae need sunlight to grow, so they are only able to grow in areas of lakes where the sun penetrates. Water transparency depends on the amount of particles in the water. An increase in particulates results in a decrease in transparency. The transparency varies year to year due to changes in weather, precipitation, lake use, flooding, temperature, lake levels, etc.

The annual means for Little Sand Lake range from 14.0-26.8 ft (Figure 3). Transparency is consistently higher at site 204 than site 203. This could be because site 204 is deeper (Table 3). Transparency monitoring should be continued at both sites to track water quality in Little Sand Lake.

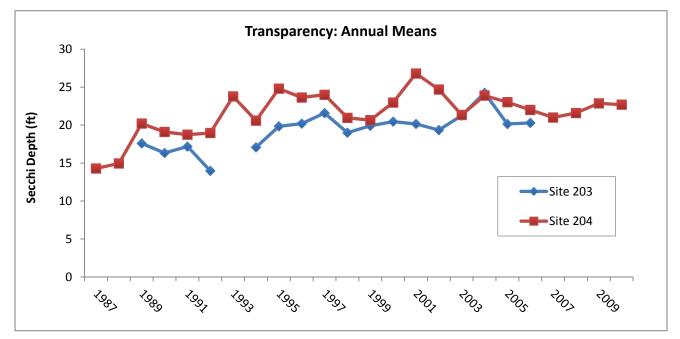


Figure 3. Annual mean transparency for sites 203 and 204.

Little Sand Lake transparency ranges from 10 to 40 feet throughout the summer. Figure 4 shows the seasonal transparency dynamics. The maximum Secchi reading is usually obtained in early summer. Little Sand Lake transparency is high in May and June and declines slightly through August. The dynamics have to do with algae and zooplankton population dynamics, and lake turnover.

It is important for lake residents to understand the seasonal transparency dynamics in their lake so they are not worried about why their transparency is lower in August than it is in June. It is typical for a lake to vary in transparency throughout the summer.

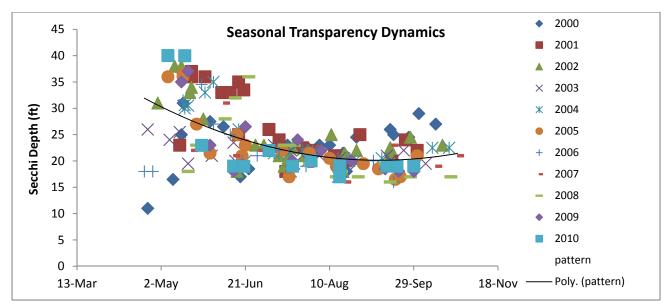


Figure 4. Seasonal transparency dynamics and year-to-year comparison (site 204). The black line represents the pattern in the data.

User Perceptions

When volunteers collect secchi depth readings, they record their perceptions of the water based on the physical appearance and the recreational suitability. These perceptions can be compared to water quality parameters to see how the lake "user" would experience the lake at that time. Looking at transparency data, as the secchi depth decreases the perception of the lake's physical appearance rating decreases. Little Sand Lake was rated as being "crystal clear" 76% of the time between 1989-2011 (Figure 5).

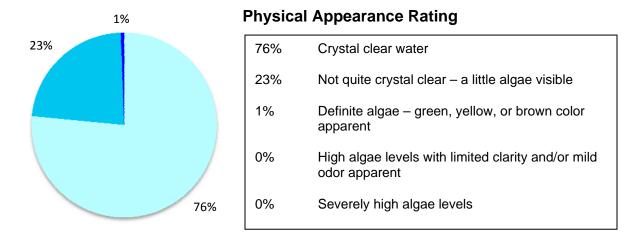


Figure 5. Physical appearance rating, as rated by the volunteer monitor.

As the secchi depth decreases, the perception of recreational suitability of the lake decreases. Little Sand Lake was rated as being "beautiful" 90% of the time from 1989-2011.

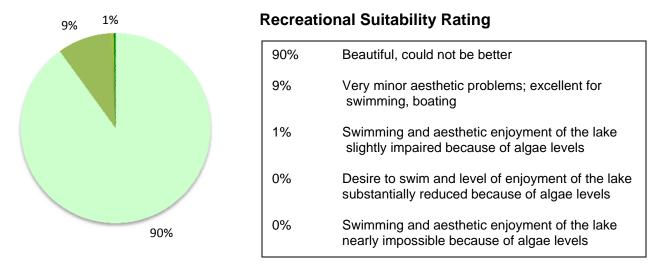


Figure 6. Recreational suitability rating, as rated by the volunteer monitor.

Total Phosphorus

Little Sand Lake is phosphorus limited, which means that algae and aquatic plant growth is dependent upon available phosphorus.

Total phosphorus was evaluated in Little Sand Lake in 1997-2011. Most of the data points fall into the oligotrophic range (Figure 7). There is not much seasonal variation in phosphorus concentration for Little Sand Lake. The highest phosphorus has occurred in May, which could be due to spring thaw runoff and rains.



Figure 7. Historical total phosphorus concentrations (ug/L) at site 204 for Little Sand Lake.

Phosphorus should

continue to be monitored to track any future changes in water quality.

Chlorophyll a

Chlorophyll *a* is the pigment that makes plants and algae green. Chlorophyll *a* is tested in lakes to determine the algae concentration or how "green" the water is.

Chlorophyll *a* concentrations greater than 10 ug/L are perceived as a mild algae bloom, while concentrations greater than 20 ug/L are perceived as a nuisance.

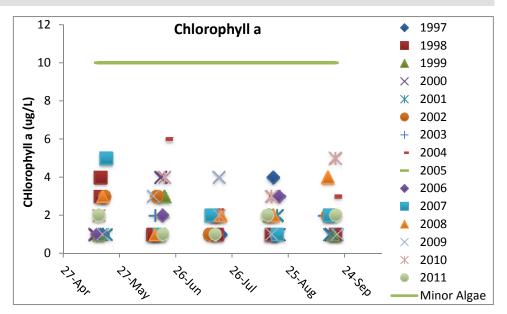
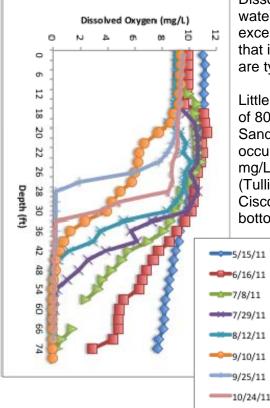



Figure 8. Chlorophyll a concentrations (ug/L) for Little Sand Lake.

Chlorophyll a was

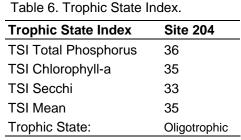
evaluated in Little Sand Lake in 1997-2011 (Figure 8). Chlorophyll *a* concentrations remained well below 10 ug/L, indicating clear water all summer and no nuisance algae blooms.

Dissolved Oxygen

Dissolved Oxygen (DO) is the amount of oxygen dissolved in lake water. Oxygen is necessary for all living organisms to survive except for some bacteria. Living organisms breathe in oxygen that is dissolved in the water. Dissolved oxygen levels of <5 mg/L are typically avoided by game fisheries.

Little Sand Lake is a relatively deep lake, with a maximum depth of 80 ft. Dissolved oxygen profiles from 2011 indicate that Little Sand Lake stratifies in the summer (Figure 9). The thermocline occurs at 26-36 feet, although the oxygen only drops below 5 mg/L in August and September. This is excellent habitat for Cisco (Tullibee) fish. Little Sand Lake is designated by the DNR as a Cisco refuge lake. To read more about this designation, see the bottom of page 16.

Figure 9. Dissolved oxygen profiles for Little Sand Lake in 2011.


Trophic State Index

Phosphorus (nutrients), chlorophyll *a* (algae concentration) and Secchi depth (transparency) are related. As phosphorus increases, there is more food available for algae, resulting in increased algal concentrations. When algal concentrations increase, the water becomes less transparent and the Secchi depth decreases.

The results from these three measurements cover different units and ranges and thus cannot be directly compared to each other or averaged. In order to standardize these three measurements to make them directly comparable, we convert them to a trophic state index (TSI).

The mean TSI for Little Sand Lake falls into the oligotrophic range (Figure 10). There is good agreement between the TSI for phosphorus, chlorophyll *a* and transparency, indicating that these variables are strongly related (Table 6).

Oligotrophic lakes are characteristic of clear water throughout the summer and are excellent for recreation (Table 7). They have very low nutrient levels and sandy/rocky shores. If there is enough hypolimnetic oxygen, trout can survive.

Numbers represent the mean TSI for each parameter.

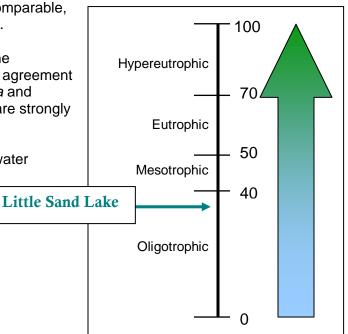


Figure 10. Trophic state index chart with corresponding trophic status.

Table 7. Trophic states and corresponding lake and fishery conditions.

TSI	Attributes	Fisheries & Recreation
<30	Oligotrophy: Clear water, oxygen throughout the year at the bottom of the lake, very deep cold water.	Trout fisheries dominate
30-40	Bottom of shallower lakes may become anoxic (no oxygen).	Trout fisheries in deep lakes only. Walleye, Cisco present.
40-50	Mesotrophy: Water moderately clear most of the summer. May be "greener" in late summer.	No oxygen at the bottom of the lake results in loss of trout. Walleye may predominate.
50-60	Eutrophy: Algae and aquatic plant problems possible. "Green" water most of the year.	Warm-water fisheries only. Bass may dominate.
60-70	Blue-green algae dominate, algal scums and aquatic plant problems.	Dense algae and aquatic plants. Low water clarity may discourage swimming and boating.
70-80	Hypereutrophy: Dense algae and aquatic plants.	Water is not suitable for recreation.
>80	Algal scums, few aquatic plants	Rough fish (carp) dominate; summer fish kills possible

Source: Carlson, R.E. 1997. A trophic state index for lakes. Limnology and Oceanography. 22:361-369.

Trend Analysis

For detecting trends, a minimum of 8-10 years of data with 4 or more readings per season are recommended. Minimum confidence accepted by the MPCA is 90%. This means that there is a 90% chance that the data are showing a true trend and a 10% chance that the trend is a random result of the data. Only short-term trends can be determined with just a few years of data, because there can be different wet years and dry years, water levels, weather, etc, that affect the water quality naturally.

There is enough historical data to perform trend analysis for total phosphorus, chlorophyll a, and transparency on Little Sand Lake (Table 8). The data was analyzed using the Mann Kendall Trend Analysis.

Lake Site	Parameter	Date Range	Trend	Probability	
204	Transparency	1987-2011	Improving	99.9%	
204	Total Phosphorus	1997-2011	Improving	99%	
204	Chlorophyll a	1997-2011	No trend	-	

Table 8. Trend analysis for Little Sand Lake.

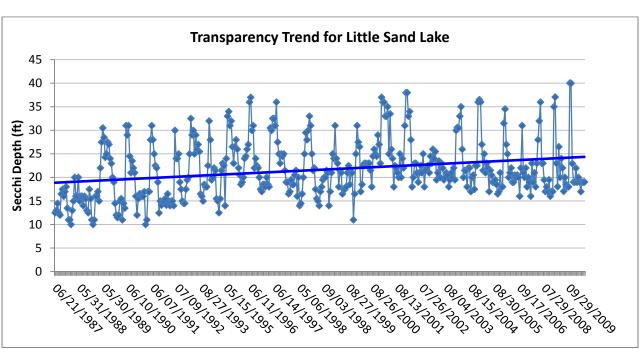


Figure 11. Long-term transparency trend for site 204 in Little Sand Lake.

Site 204 shows a statistically significant improving trend in transparency from 1987-2011 (Figure 11). There is also an improving trend in phosphorus, which means that phosphorus concentrations are getting lower. Monitoring should continue at site 204 so that this trend can be tracked in future years.

Ecoregion Comparisons

Minnesota is divided into 7 ecoregions based on land use, vegetation, precipitation and geology (Figure 12). The MPCA has developed a way to determine the "average range" of water quality expected for lakes in each ecoregion. From 1985-1988, the MPCA evaluated the lake water quality for reference lakes. These reference lakes are not considered pristine, but are considered to have little human impact and therefore are representative of the typical lakes within the ecoregion. The "average range" refers to the 25th - 75th percentile range for data within each ecoregion. For the purpose of this graphical representation, the means of the reference lake data sets were used.

Little Sand Lake is in the Northern Lakes and Forests Ecoregion. The means for phosphorus, chlorophyll a and and transparency are better than the ecoregion ranges (Fig 13).

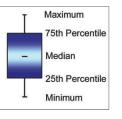
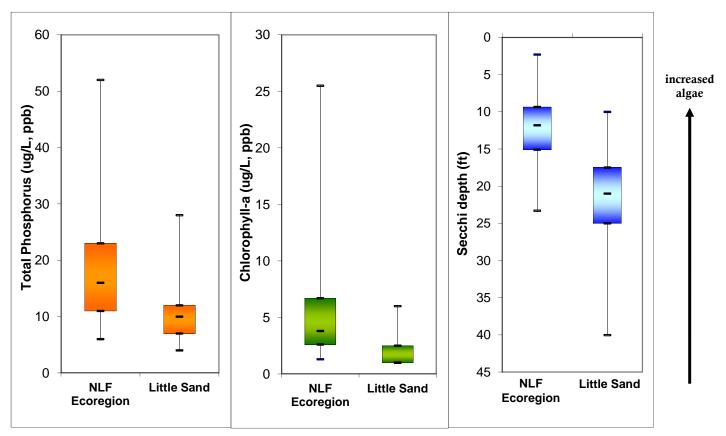



Figure 12. Map of Minnesota with the seven ecoregions.

Figures 13a-c. Little Sand Lake ranges compared to Northern Lakes and Forest Ecoregion ranges. The Little Sand Lake total phosphorus and chlorophyll *a* ranges are from 80 data points collected in May-September of 1997-2011. The Little Sand Lake Secchi depth range is from 434 data points collected in May-September from 1987-2011.

Lakeshed

Understanding a lakeshed requires an understanding of basic hydrology. A watershed is defined as all land and water surface area that contribute excess water to a defined point. The MN DNR has delineated three basic scales of watersheds (from large to small): 1) basins, 2) major watersheds, and 3) minor watersheds.

The **Crow Wing River Major Watershed** is one of the watersheds that make up the Upper Mississippi River Basin, which begins at Itasca State Park and drains south towards the Gulf of Mexico (Figure 14). This major watershed is made up of 136 minor watersheds. Little Sand Lake is located in **minor watershed** 12007 (Figure 15).

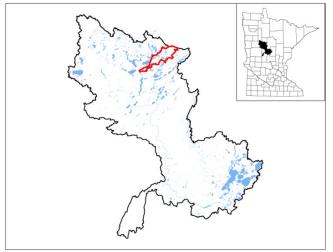


Figure 14. Crow Wing River Watershed.

The MN DNR also has evaluated catchments for each individual lake with greater than 100 acres surface area. These lakesheds (catchments) are the "building blocks" for the larger scale watersheds. Little Sand Lake falls within lakeshed number 1200700 (Figure 16). Though very useful for displaying the land and water that contribute directly to a lake, lakesheds are not always true watersheds because they may not show the water flowing into a lake from upstream streams or rivers. While some lakes may have only one or two upstream lakesheds draining into them, others may be connected to a large number of lakesheds, reflecting a larger drainage area via stream or river networks. For further discussion of Little Sand Lake's full watershed, containing all the lakesheds upstream of Little Sand Lake lakeshed,

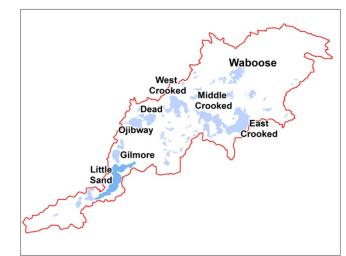


Figure 15. Minor Watershed 12007

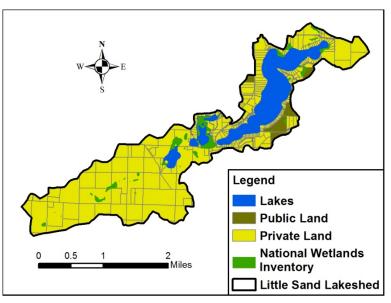


Figure 16. The Little Sand Lake lakeshed with land ownership, lakes, wetlands, and rivers illustrated.

see page 5. The data interpretation of the Little Sand Lake lakeshed includes only the immediate lakeshed, as this area is the land surface that flows directly into Little Sand Lake.

The lakeshed vitals table identifies where to focus organizational and management efforts for each lake (Table 9). Criteria were developed using limnological concepts to determine the effect to lake water quality.

KEY

Possibly detrimental to the lake
Warrants attention
Beneficial to the lake

Table 9. Lakeshed vitals for Little Sand Lake.

Lakeshed Vitals		Rating
Lake Area	410 acres	descriptive
Littoral Zone Area	149 acres	descriptive
Lake Max Depth	80 ft.	descriptive
Lake Mean Depth	24.8 ft.	\bigcirc
Water Residence Time	0.9	\bigcirc
Miles of Stream	0.17	descriptive
Inlets	2	\bigcirc
Outlets	1 – Little Sand River	\bigcirc
Major Watershed	Crow Wing River	descriptive
Minor Watershed	12007	descriptive
Lakeshed	1200700	descriptive
Ecoregion	Northern Lakes and Forest	descriptive
Total Lakeshed to Lake Area Ratio (total lakeshed includes lake area)	7:1	\bigcirc
Standard Watershed to Lake Basin Ratio (standard watershed includes lake areas)	137:1	
Wetland Coverage	3.7%	\bigcirc
Aquatic Invasive Species	None	\bigcirc
Public Drainage Ditches	None	\bigcirc
Public Lake Accesses	2	\bigcirc
Miles of Shoreline	6.4	descriptive
Shoreline Development Index	2.3	
Public Land : Private Land (excludes water)	0.05:1	\bigcirc
Development Classification	Recreational Development	\bigcirc
Miles of Road	15.5	descriptive
Municipalities in lakeshed	None	\bigcirc
Forestry Practices	2002 Hubbard County Forest Resources Management Plan	\bigcirc
Feedlots	None	\bigcirc
Sewage Management	Individual waste treatment systems (last lake- wide county inspection - 1994)	\bigcirc
Lake Management Plan	Healthy Lakes & Rivers Partnership program, 2003	\bigcirc

Land Cover / Land Use

The activities that occur on the land within the lakeshed can greatly impact a lake. Land use planning helps ensure the use of land resources in an organized fashion so that the needs of the present and future generations can be best addressed. The basic purpose of land use planning is to ensure that each area of land will be used in a manner that provides maximum social benefits without degradation of the land resource.

Changes in land use, and ultimately land cover, impact the hydrology of a lakeshed. Land cover is also directly related to the land's ability to absorb and store water rather than cause it to flow overland (gathering nutrients and sediment as it moves) towards the lowest point,

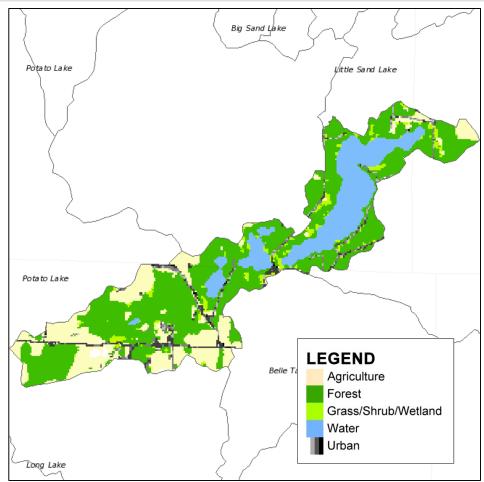


Figure 17. Little Sand (1200700) lakeshed land cover (http://land.umn.edu).

typically the lake. Impervious intensity describes the land's inability to absorb water, the higher the % impervious intensity the more area that water cannot penetrate in to the soils. Monitoring the changes in land use can assist in future planning procedures to address the needs of future generations.

Phosphorus export, which is the main cause of lake eutrophication, depends on the type of land cover occurring in the lakeshed. Figure 17 depicts the land cover in Little Sand Lake's lakeshed.

The University of Minnesota has online records of land cover statistics from years 1990 and 2000 (http://land.umn.edu). This data is somewhat outdated, but it is the most recent comparable data available. Table 10 describes Little Sand Lake's lakeshed land cover statistics and percent change from 1990 to 2000. Due to the many factors that influence demographics, one cannot determine with certainty the projected statistics over the next 10, 20, 30+ years, but one can see the transition within the lakeshed from agriculture, grass/shrub/wetland, and water acreages to forest and urban acreages. The largest change in percentage is the increase in urban cover (26%); however, in acreage, agriculture cover has decreased the most (82 acres). In addition, the impervious intensity has increased, which has implications for storm water runoff into the lake. The increase in impervious intensity is consistent with the increase in urban acreage.

Table 10. Little Sand Lake's lakeshed land cover statistics and % change from 1990 to 2000 (http://land.umn.edu).

		1990		2000	% Change
Land Cover	Acres	Percent	Acres	Percent	1990 to 2000
Agriculture	682	22.91	600	20.15	12.0% Decrease
Forest	1454	48.84	1517	50.96	4.3% Increase
Grass/Shrub/Wetland	115	3.86	123	4.13	7.0% Increase
Water	551	18.51	516	17.33	6.4% Decrease
Urban	177	5.95	223	7.49	26% Increase
Impervious Intensity %					
0	2829	95.03	2755	92.54	2.6% Decrease
1-10	51	1.71	40	1.34	21.6% Decrease
11-25	57	1.91	79	2.65	38.6% Increase
26-40	22	0.74	62	2.08	181.8% Increase
41-60	16	0.54	35	1.18	118.8% Increase
61-80	3	0.1	6	0.2	100% Increase
81-100	0	0	0	0	No Change
Total Area	2977		2977		
Total Impervious Area (Percent Impervious Area Excludes Water Area)	29	1.2	57	2.32	96.6% Increase

Demographics

Little Sand Lake is classified as a recreational development lake. Recreational development lakes usually have between 60 and 225 acres of water per mile of shoreline, between 3 and 25 dwellings per mile of shoreline, and are more than 15 feet deep.

The Minnesota Department of Administration Geographic and Demographic Analysis Division extrapolated future population in 5-year increments out to 2035. Compared to Hubbard County as a whole, Mantrap and Lake Emma Township have a higher extrapolated growth projection (Figure 18).

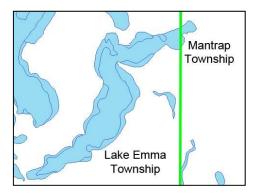
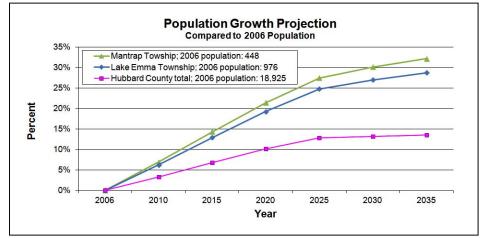



Figure 18. Population growth projection for Hubbard Townships and Hubbard County. (source: http://www.demography.stat e.mn.us/resource.html?ld=1 9332)

Little Sand Lake Lakeshed Water Quality Protection Strategy

Each lakeshed has a different makeup of public and private lands. Looking in more detail at the makeup of these lands can give insight on where to focus protection efforts. The protected lands (easements, wetlands, public land) are the future water quality infrastructure for the lake. Developed land and agriculture have the highest phosphorus runoff coefficients, so this land should be minimized for water quality protection.

The majority of the land within Little Sand Lake's lakeshed is made up of private forested uplands (Table 11). This land can be the focus of development and protection efforts in the lakeshed.

Table 11. Percent land use in private versus publicly owned land with corresponding phosphorus loading and protection/restoration ideas (Sources: Minnesota DNR GAP Stewardship data, National Wetlands Inventory, and the 2006 National Land Cover Dataset).

		Private (79%)					Public (4%)		%)
	Developed	Agriculture	Forested Uplands	Other	Wetlands	Open Water	County	State	Federal
Land Use (%)	4.8%	16.1%	50.5%	5.4%	2.2%	17%	2.8%	1.2%	0%
Runoff Coefficient Lbs of phosphorus/acre/ year	0.45 – 1.5	0.26 – 0.9	0.09		0.09		0.09	0.09	0.09
Estimated Phosphorus Loading Acreage x runoff coefficient	64 – 212	124 – 430	135		6		8	3	
Description	Focused on Shoreland	Cropland	Focus of develop- ment and protection efforts	Open, pasture, grass- land, shrub- land		F	Protected		
Potential Phase 3 Discussion Items	Shoreline restoration	Restore wetlands; CRP	Forest stewardship planning, 3 rd party certification, SFIA, local woodland cooperatives		Protected by Wetland Conservation Act		County Tax Forfeit Lands	State Forest	National Forest

DNR Fisheries approach for lake protection and restoration

Credit: Peter Jacobson and Michael Duval, Minnesota DNR Fisheries

In an effort to prioritize protection and restoration efforts of fishery lakes, the MN DNR has developed a ranking system by separating lakes into two categories, those needing protection and those needing restoration. Modeling by the DNR Fisheries Research Unit suggests that total phosphorus concentrations increase significantly over natural concentrations in lakes that have watershed with disturbance greater than 25%. Therefore, lakes with watersheds that have less than 25% disturbance need protection and lakes with more than 25% disturbance need restoration (Table 12). Watershed disturbance was defined as having urban, agricultural and mining land uses. Watershed protection is defined as publicly owned land or conservation easement.

Table 12. Suggested approaches for watershed protection and restoration of DNR-managed fish lakes in Minnesota.

Watershed Disturbance (%)	Watershed Protected (%)	Management Type	Comments
	> 75%	Vigilance	Sufficiently protected Water quality supports healthy and diverse native fish communities. Keep public lands protected.
< 25%	< 75%	Protection	Excellent candidates for protection Water quality can be maintained in a range that supports healthy and diverse native fish communities. Disturbed lands should be limited to less than 25%.
25-60%	n/a	Full Restoration	Realistic chance for full restoration of water quality and improve quality of fish communities. Disturbed land percentage should be reduced and BMPs implemented.
> 60%	n/a	Partial Restoration	Restoration will be very expensive and probably will not achieve water quality conditions necessary to sustain healthy fish communities. Restoration opportunities must be critically evaluated to assure feasible positive outcomes.

The next step was to prioritize lakes within each of these management categories. DNR Fisheries identified high value fishery lakes, such as cisco refuge lakes. Ciscos (*Coregonus artedi*) can be an early indicator of eutrophication in a lake because they require cold hypolimnetic temperatures and high dissolved oxygen levels. These watersheds with low disturbance and high value fishery lakes are excellent candidates for priority protection measures, especially those that are related to forestry and minimizing the effects of landscape disturbance.

Little Sand Lake was classified with having 22.8% of the watershed protected and 22.1% of the watershed disturbed (Figure 19). Therefore, Little Sand Lake should have a protection focus. This lake is almost at the 25% disturbed threshold, so it is almost ranked in the yellow (full restoration) category. Goals for the lake should be to limit any increase in disturbed land use.

Figure 20 displays the upstream lakesheds that contribute water to the lakeshed of interest. All of the land and water area in this figure has the potential to contribute water to Little Sand Lake, whether through direct overland flow or through a creek or river. The majority of the watershed has a protection focus.

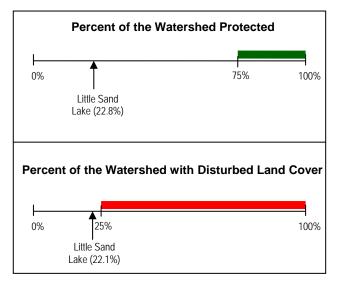


Figure 19. Little Sand Lake lakeshed's percentage of watershed protected and disturbed.

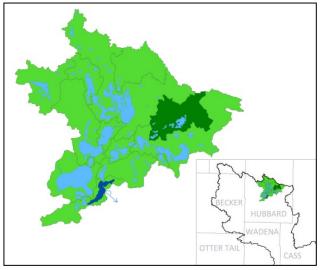


Figure 20. Upstream lakesheds that contribute water to the Little Sand lakeshed. Color-coded based on management focus (Table 3).

Little Sand, Status of the Fishery (as of 06/18/2007)

Little Sand is located in southern Hubbard County, 2 miles north of Dorset. Little Sand has a surface area of 386 acres and a maximum depth of 80 feet. A public access is located on the south shore of the lake, with small boat access also available from the inlet channel connecting to Ida Lake. Little Sand is known for its walleye fishery and exceptional water quality.

The Minnesota Dept. of Natural Resources (DNR) has classified Minnesota's lakes into 43 different types based on physical, chemical, and other characteristics. Little Sand is in lake class 25. Other area lakes in this same classification include: Bad Axe, Belle Taine, West Crooked, Eagle, Island, Big Mantrap, Little Mantrap, Ojibway, and Spider.

Walleye abundance continued to be down with the 2007 gillnet catch rate of 2.3 walleye/gillnet the lowest recorded on Little Sand, and well below the current management goal of 7 walleye/gillnet. Walleye abundance was also poor in the previous survey in 2002 (2.7 walleye/gillnet), while earlier surveys have had catch rates ranging from 5.3 walleye/gillnet (1977) to 26.6 walleye/gillnet (1962). Little Sand is currently stocked annually with 225,000 walleye fry. Yellow perch, an important forage species for walleye, were sampled in low to moderate numbers (5.8 perch/gillnet). Past surveys have had similar yellow perch abundance, generally near the low end of the range "typical" for this lake class. Yellow perch were small in size, with few perch an acceptable size for angling.

Anglers can expect to find lots of small, "hammer handle" northern pike in Little Sand. Sampled northern pike had an average length and weight of 20.1 inches and 1.8 pounds, with pike measured up to 31.9 inches. Northern pike abundance (11.4 pike/gillnet) is above the range "typical" for this lake class, and similar to recent surveys. Northern pike abundance was low in historical surveys, and then started to explode in the late 1990's. High numbers of small fish and slow growth rates are limiting the northern pike population in Little Sand. Silver pike (a genetic color phase) are present in low numbers in Little Sand.

While not known as a panfish lake, Little Sand does provide angling opportunities for both bluegill and black crappie. Anglers can expect to find low to moderate numbers of black crappie with fish in the 9-10 inch size range. Bluegill were sampled in moderate numbers, within the range "typical" for this lake class. Good numbers of bluegill in the 7-8 inch size range were sampled.

Little Sand has both a largemouth bass and smallmouth bass population. Largemouth bass are the more common of the two species with smallmouth bass present in low numbers. Little Sand had good water quality, bottom substrate, and aquatic vegetation that will help insure a healthy largemouth and smallmouth bass population.

Other species sampled included high numbers of rock bass and moderate numbers of yellow bullhead and white sucker. Brown bullhead and hybrid sunfish were sampled in low numbers.

See the link below for specific information on gillnet surveys, stocking information, and fish consumption guidelines. <u>http://www.dnr.state.mn.us/lakefind/showreport.html?downum=29015000</u>

Key Findings / Recommendations

Emergent and Floating Leaf Plant Survey

In 2005, Little Sand Lake was surveyed by members of the Little Sand Lake Association - Vern Thompson, Jim Thomsen, & Dan Kittilson, The survey was conducted over 4 days - August 28 & 29. and September 3 & 4 in cooperation with the DNR in Park Rapids. During the survey, 177 points were sampled and 20 different plants were identified. The most common plant found was Chara, which is found in clear sandy lakes and indicates good water quality. For the full report from this survey, see page 21.

Monitoring Recommendations

Transparency monitoring at site 204 should be continued annually. It is important to continue transparency monitoring weekly or at least bimonthly every year to enable year-to-year comparisons and trend analyses. Phosphorus and chlorophyll a monitoring should continue, as the budget allows, to track future water quality trends.

Overall Conclusions

Little Sand Lake is an outstanding water resource. It is an oligotrophic lake (TSI=35) with an improving water quality trend in both transparency and phosphorus. Four percent (4%) of the lakeshed is in public ownership (Table 11), and 22.8% of the watershed is protected, while 22.1% of the watershed disturbed (Figure 19). Half of the private land area is covered in forest.

It is unclear why Little Sand Lake is improving in transparency and phosphorus. Sometimes these trends are due to the natural environment. Little Sand Lake has a high watershed to lake area ratio (137:1), which means there is a lot of area draining into the lake. If the Little Sand Lake area is very sandy, as the name suggests, it could be that the nutrients from the watershed are just draining through the sand and not affecting the lake.

Big Sand Lake is improving in clarity and phosphorus as well, and Big Sand drains into Little Sand, so the trends on these two lakes could be linked. Lakewide septic system upgrades were completed on both lakes in the mid-1990s, so this could be another possible explanation for the water quality improvement.

Priority Impacts to the lake

Because Little Sand Lake is such an outstanding water resource and fishery, there is a high degree of development pressure. From 1990-2000, the impervious surface increased by 96% (28 acres) (Table 10). Most suitable first tier land parcels have been developed. The population in the Lake Emma Township is projected to grow another 25% in the next 10 years.

As discussed on page 16, modeling by the DNR Fisheries Research Unit suggests that total phosphorus concentrations increase significantly over natural concentrations in lakes that have watershed with disturbance greater than 25%. The Little Sand lakeshed is currently at 22.1% disturbed land uses (urban and agriculture categories). Conversion of land to one of these uses should be carefully planned and its effect should be mitigated through the implementation of best management practices.

In addition, 16% of the lakeshed is in agricultural land use: however, the agricultural cover decreased by 12% from 1990-2000. The agriculture is mainly in the southwest end of the lakeshed and at least 0.5 miles from the shoreline.

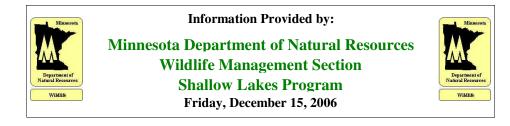
Best Management Practices Recommendations

The management focus for Little Sand Lake should be to protect the current water quality. Protection efforts should be focused on managing and/or decreasing the impact caused by additional development, including second tier development, and impervious surface area. Deliberate planning should focus on the placement of development infrastructure and its resulting drainage patterns. Project ideas include protecting land with conservation easements (forest stewardship enrollment), enforcing county shoreline ordinances, smart development, shoreline restoration, rain gardens, and septic system maintenance.

Organizational contacts and reference sites

Little Sand Lake Association	No contact information available.
DNR Fisheries Office	301 South Grove Avenue, Park Rapids, MN 56470 218-732-4153 parkrapids.fisheries@state.mn.us http://www.dnr.state.mn.us/areas/fisheries/parkrapids/index.html
Regional Minnesota Pollution Control Agency Office	714 Lake Ave., Suite 220, Detroit Lakes, MN 56501 218-847-1519, 1-800-657-3864 <u>http://www.pca.state.mn.us/yhiz3e0</u>
Hubbard County Soil and Water Conservation District	212 1/2 2nd St W, Park Rapids MN 56470 218-732-0121 http://www.hubbardswcd.org/

Wildlife Lake Habitat Survey Report


NAME OF LAKE: Little Sand

DOW LAKE ID #: 29015000

DATE OF SURVEY: 8/28/2006

TYPE OF SURVEY: Wildlife Lake Survey

SURVEY CREW: V. Thompson, J. Thomsen, & D. Kittilson

DOW Lake ID: Survey Date:	2901500 8/28/200		Ge	neral	Lake I	nformation		
Location Inform	nation					Primary County:	Hubbard	
Legal Description						Work Area Name:		
Township:	141 R	lange:	34	Section:	36	Wildlife Work Are	a:	
General DOW 1	Lake Inf	ormati	<u>on</u>					
Basin Area (Acre	s):	437				DOW Wetland Ty	pe: 5	
Secchi Depth (fee	t):	14				Watershed ID:	12007	
PWI Class:		Р				USGS Quad Name	: Dorset	
Number of Public	c Accesses:	: 1				Miles of Shoreline:	6	
Survey Maximun	n Lake De	epth: 3	0.0			DOW Maximum L	ake Depth 80.0	
Survey Mean Lal	ke Depth:	7.	1			DOW Mean Lake	Depth: 22.0	
Survey Maximun	Secchi De	epth: 1:	5.0					
Survey Mean Sec	chi Depth:	: 1:	5.0					
Lake Survey Co	onditions	5						
Time:						Cloud Cover (%):		
Temperature Air /	Water (F)):	/			Wind Speed (mph)	:	Direction:
Previous Wildlife Lake Survey Information								
Type of Survey	Surv	ey Year	Surv	vey Date	Survey Cre	W	Requested by	
Wildlife Lake Surve	ey 200	6	08/2	28/2006	V. Thompso	on, J. Thomsen, &	Little Sand Lake	Association
Lake Survey Access Information								
Ownership: MN Department of Natural Resources Access Type: Concrete								
Description: The public access is located on the east side of the lake, off of a township road.								

Inlets and Outlets Information

Inlet Information

Inlet Name: Ida Lake (#29-170)

Inlet Type Code (a):

Inlet Cover Type (c) and Description:

Fish Barrier (Y/N) (e): X

Fish Barrier Description:

Comments:

Ida Lake inlets into Little Sand at the southwest bay.

Outlet Information

Outlet Name: Little Sand River Lake or River ID: Tributary To: Little Sand River

Water Control Structure Information

Type and Description:

Owner and Description

Head Reading:

Sill Reading:

Gauge Reading

Comments:

The outlet is located on the east side of the lake (near survey point #9).

(a) (ID) Intermittent - Dry (no flow at mouth, still may contain water), (IF) Intermittent - Flowing (curently has flow at mouth), (C) ontinuous flow, (X) Unkown

(b) (N)amed lake (give name), (U)nnamed lake, (M)arsh, (S)pring, (W)ell, (T)ile, (SS) Storm sewer, (D)itch, (O)ther (describe), (X) Uknown

(c) Give up to two most common in order of abundance: (H)ardwoods, (CO)nifers, (MI)xed Forest, (G)rasses, (CR)ops, (P)asture, (MU)nicipal, (R)esidential, (O)ther (describe), (X) Unkown

(d) (F) loating object, (C) urrent meter, (D) irect time and volume measurement (gpm / 15.9 = cfs). Describe where the flow measurement and avg. width/depth estimates were taken on the flow worksheet section

(e) (Y)es, (N)o, (X) Unkown

(f) List the species code for up to 4 species with known spawing runs in this inlet

(g) (TC) type "C" with stoplogs, (SP) Sheet piling, (DI) Drop inlet with stoplogs, (CF) Concrete with fixed sill, (BD) Beaver dam, (O)ther (describe), (X) Unkown

(h) (DNR), (UFS), (DOT), (COU)nty, (COE), (NPS), (FWS), (CIT)y, (TOW)nship, (NPS), (PRI)vate (describe), (None) (natural dam), (O)ther (describe), (X) Unkown

Outlet Flow Information	
Flow (fps):	
Flow (cfs):	
Method (d):	
Average Width (feet):	
Average Depth (feet):	
Barrier to Fish (Y/N) (e):	N
Fish Barrier Description:	

Inlet Flow Information

Flow (fps):	Average Width (feet):
Flow (cfs):	Average Depth (feet):
Method (d):	Inlet Surface Temp (F

DOW Lake ID: 29015000 Survey Date: 8/28/2006	Water Level and	Chemistry				
Water Level Information						
Code: GA	Water Level Reading Date:	08/22/2006				
Benchmark/Gauge Description:	•	water level reading was taken during the survey. However, water level readings are orded throughout the open water season. The OHW is 1427.9 MSL.				
Water Level Reading (feet + or -):	1427.66					
Current Water Level:	L					
Water Level Description:						
Average Annual Fluctuation:						
Annual Fluctuation Description:						
Annual Level Fluctuation Source:						
Extreme Fluctuation:						
Water Level History Comments:						
Code: GA	Water Level Reading Date:	09/07/2006				
Benchmark/Gauge Description:	No water level reading was taken during the survey. However, water level readings are recorded throughout the open water season. The OHW is 1427.9 MSL.					
Water Level Reading (feet + or -):	1427.62					
Current Water Level:						
Water Level Description:						
Average Annual Fluctuation:						
Annual Fluctuation Description:						
Annual Level Fluctuation Source:						
Extreme Fluctuation:						
Water Level History Comments:						
Water Chemistry						
Lake or Inlet (L or I):	L Stat	ion Number of Water Sample:				
Sample Date:		-				
Date Sample Analyzed:	Bottom Depth (ft):					
Nonstandard Description:						
Color Couco Codo and Decerintia						
Color Cause Code and Description Water Color Code and Descriptio						
mater Color Coue and Descriptio						
Biological O2 Demand (ppm):	Dissolved Oxygen (ppr	n): Organic Dissolved Solids (ppm)				
Ortho Phosphorus (ppm):	Conductivity (umhos):	Total Phosphorus (ppm): 0.007				
Sulphate Ion (ppm):	Chloride Ion (ppm):	pH:				
Nitrite [NO2-N] (ppm):	Nitrogen TLKJ (ppm)	Alkalinity (ppm):				
Dissolved Iron (ppm):	Dissolved Solids (ppm)	: Alkalinity Method:				
	Dissolved Solids (ppm) Nitrate [NO3-N] (ppm)	·				

Other Measurements:

Comments:

No water sample was collected during the survey. However, the lake is part of the Hubbard County Coalition of Lake Associations (COLA) monitoring effort. As part of the effort, a Secchi reading is taken and a water sample is collected once a month from May through September. Water samples are tested for total phosphorus and chlorophyll A by RMB Environmental Laboratories in Detroit Lakes. Data is available from 1997 to the present, and can be viewed at RMB's website at: http://www.rmbel.info/Reports/ReportsQuery.aspx. The water sampling results for August 20 were included in this survey report. Weather conditions for 8/20/06: the sky was clear with 0-10 mph winds from the southwest, the water temperature was 69 degrees F and water temperature was 70 degrees F

DOW Lake ID: 29015000 Survey Date: 8/28/2006

Waterfowl and Wildlife Observations / Field Notes

Waterfowl Observations:

Several mallards and wood ducks were observed.

Other Wildlife Observations:

Several common loons and an osprey were observed.

Field Notes:

Surveyed 180 waypoints. Surveyed emergent vegetation in 2005. Lake is very clear. Little Sand Lake was surveyed by members of the Little Sand Lake Association - Vern Thompson, Jim Thomsen, & Dan Kittilson. The survey was conducted over 4 days - August 28 & 29, and September 3 & 4 and took approximately 16 hours to complete.

The Little Sand Lake Association members are interested in long-term monitoring of the lake's plant community. Members had previously worked with DNR Fisheries to conduct a survey documenting the emergent vegetation. The purpose of this survey was to document the submerged vegetation. Little Sand has a maximum depth of 80 feet, so only the littoral zone, approximately 149 acres, was surveyed.

The survey was coordinated through Erik Thorson, Assistant Area Wildlife Manager at Park Rapids. The littoral zone was delineated with GIS software. A survey point grid was designed with dense spacing to provide more thorough coverage of the area and to increase the probability of detecting small changes in the plant community.

Only 1 Secchi reading was taken - at point #56; the reading was 15 feet.

Wildlife Managers Comments or Management Recommendations:

No management recommendations at this time.

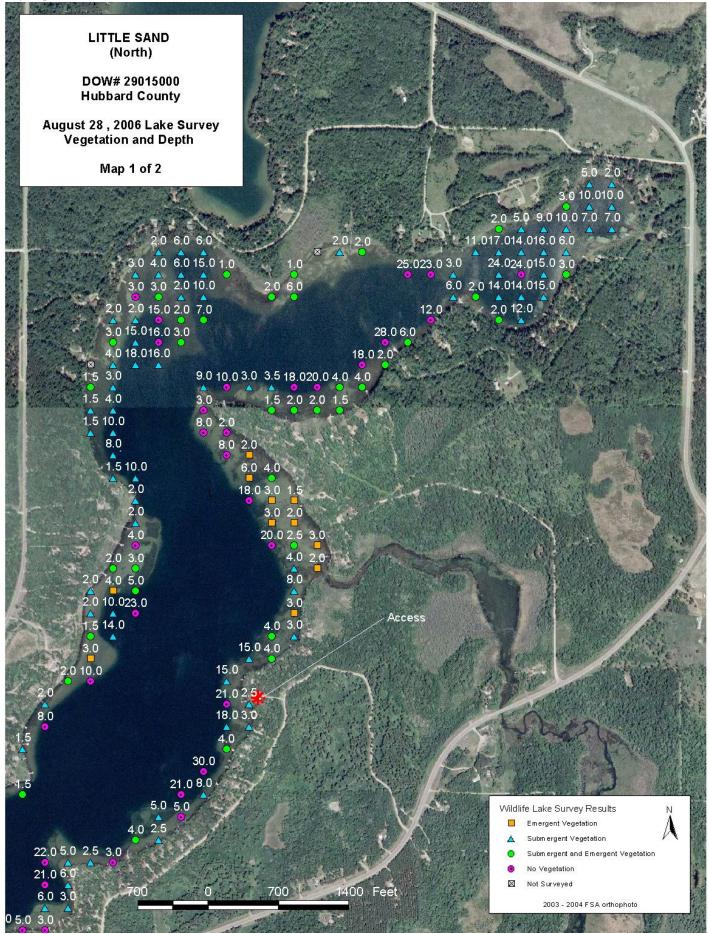
DOW Lake ID: 29015000 Survey Date: 8/28/2006 Wildlife Lake Sample Station Summary - Little Sand

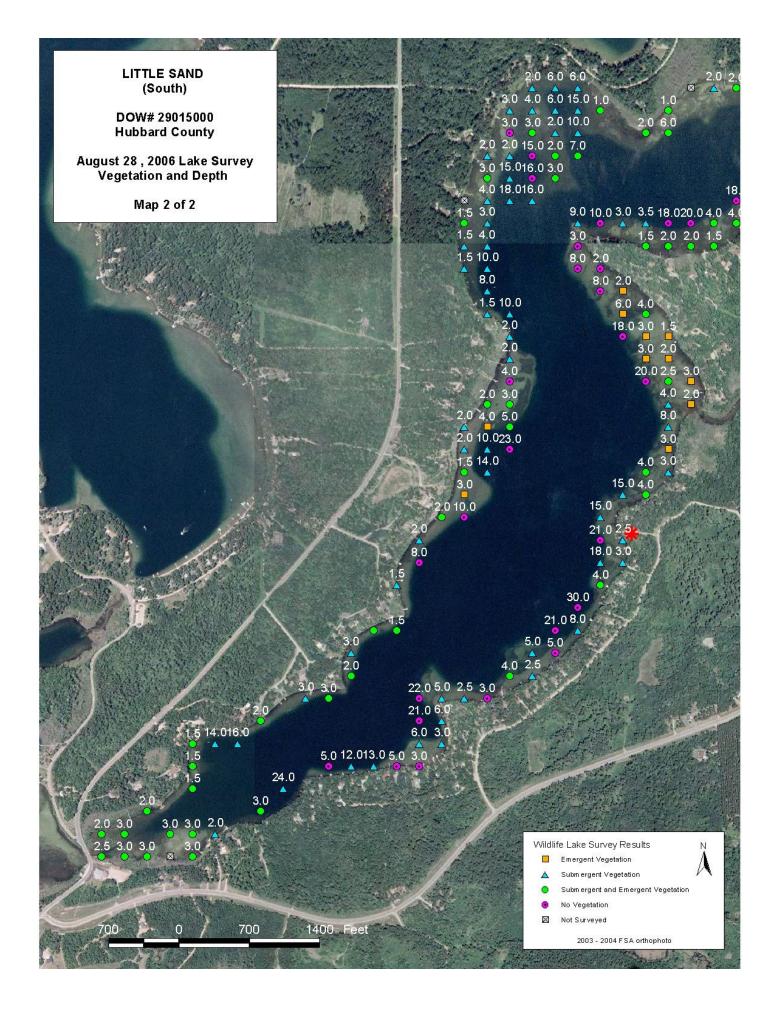
Sample Stati	on Information
--------------	----------------

Minimum Depth:	1.0	Minimum Secchi:	15.0
Maximum Depth:	30.0	Maximum Secchi:	15.0
Mean Depth:	7.1	Mean Secchi:	15.0

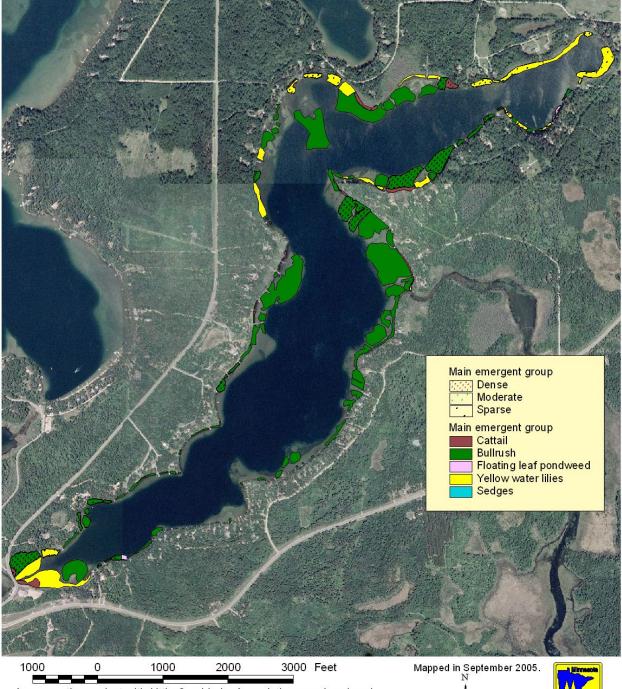
Initial # of Stations: 180

Number of Stations Sampled: 177

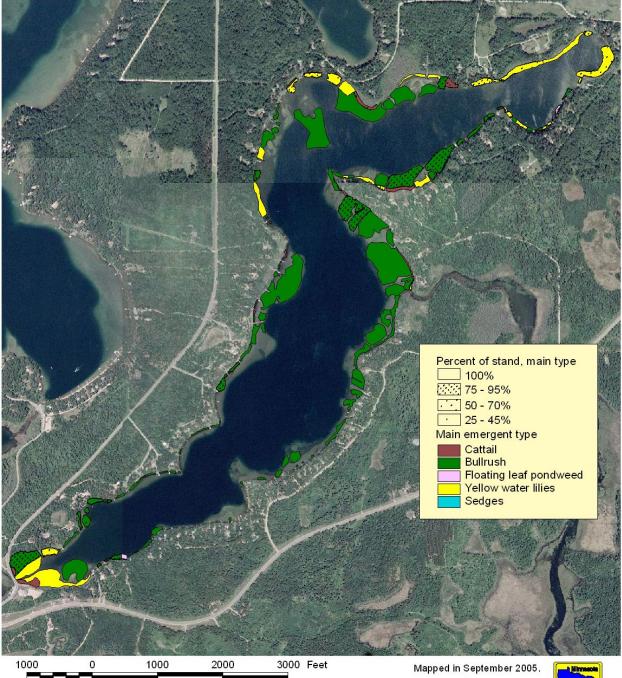

Vegetation Summary


Number of Sample Stations: 177

Lakewide Species Richness: 20


Percent of Vegetated Plots: 81.9%

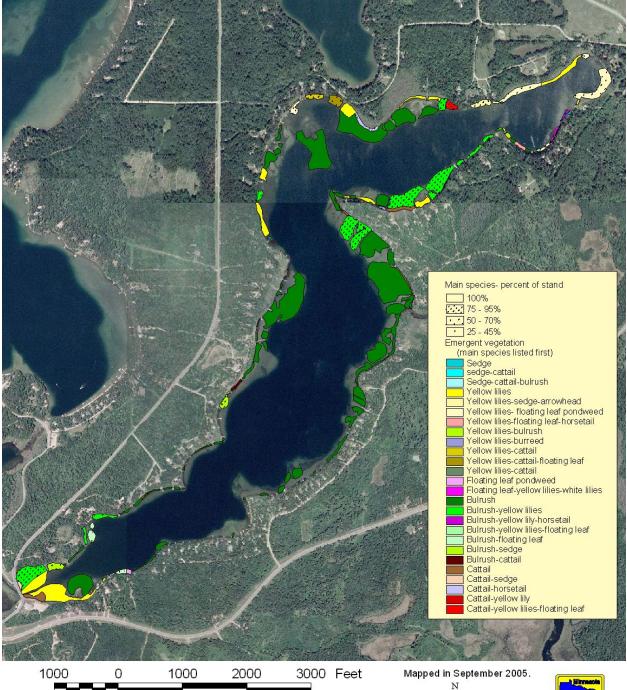
reformed regetated rioto.	01.970					
Vegetation Species	# of Plots Occurring 91	Species Frequency 51.4%	95% Cl 0.0767	High C / I	Low C / I	Frequency Value
Scirpus acutus	48	27.1%	0.0685	0.3397	0.2027	0.2712
-						
Najas marina	46	26.0%	0.0676	0.3275	0.1923	0.2599
Myriophyllum sibiricum	37	20.9%	0.0629	0.2719	0.1461	0.2090
Potamogeton amplifolius	36	20.3%	0.0623	0.2657	0.1411	0.2034
No vegetation observed	32	18.1%	0.0597	0.2405	0.1211	0.1808
Potamogeton zosteriformis	22	12.4%	0.0516	0.1759	0.0727	0.1243
Potamogeton natans	16	9.0%	0.0452	0.1356	0.0452	0.0904
Nymphaea odorata	15	8.5%	0.0440	0.1287	0.0408	0.0847
Elodea canadensis	11	6.2%	0.0385	0.1006	0.0237	0.0621
Nuphar variegata	11	6.2%	0.0385	0.1006	0.0237	0.0621
Najas flexilis	9	5.1%	0.0353	0.0861	0.0156	0.0508
Utricularia vulgaris	9	5.1%	0.0353	0.0861	0.0156	0.0508
Potamogeton richardsonii	8	4.5%	0.0335	0.0787	0.0117	0.0452
Ceratophyllum demersum	7	4.0%	0.0316	0.0712	0.0079	0.0395
Zosterella dubia	6	3.4%	0.0296	0.0635	0.0043	0.0339
Potamogeton NL spp.	5	2.8%	0.0273	0.0556	0.0009	0.0282
Nitella spp.	2	1.1%	0.0184	0.0297	-0.0071	0.0113
Stuckenia pectinata	2	1.1%	0.0184	0.0297	-0.0071	0.0113
Potamogeton gramineus	1	0.6%	0.0139	0.0195	-0.0082	0.0056
Equisetum spp.	1	0.6%	0.0139	0.0195	-0.0082	0.0056


Little Sand Lake Density of main type of emergent vegetation

A cooperati∨e project with Little Sand Lake Association members* and DNR Fisheries- Park Rapids.

*Dan Kittilson, Jim Thomsen, and Vern Thompson.

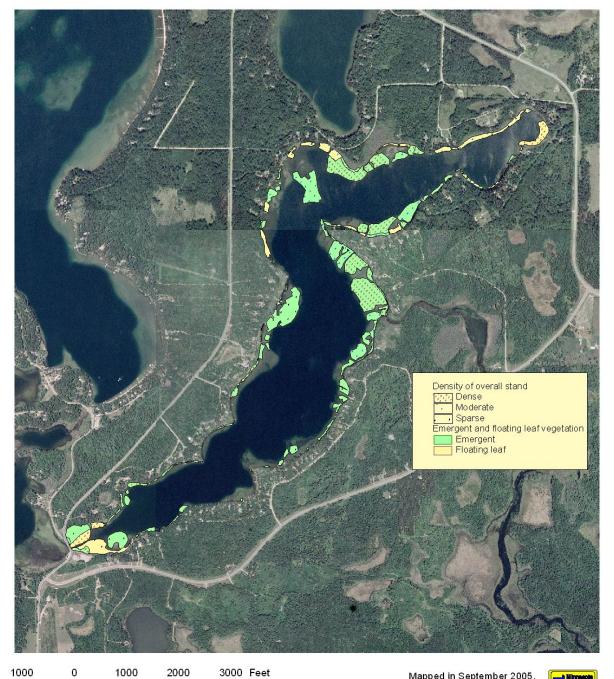
Little Sand Lake Main type of emergent vegetation and percent of stand


A cooperative project with Little Sand Lake Association members* and DNR Fisheries- Park Rapids.

*Dan Kittilson, Jim Thomsen, and Vern Thompson.

N A

Little Sand Lake Emergent vegetation stands



A cooperative project with Little Sand Lake Association members* and DNR Fisheries- Park Rapids.

*Dan Kittilson, Jim Thomsen, and Vern Thompson.

Little Sand Lake Emergent vegetation and floating leaf stands

A cooperative project with Little Sand Lake Association members* and DNR Fisheries- Park Rapids.

*Dan Kittilson, Jim Thomsen, and Vern Thompson.

Mapped in September 2005.

Lake Waves http://www.dnr.state.mn.us/lakes/ncml_lake_waves.html#week4

PRINT - Week 4: July 11, 2005 Words: 358 Not just weeds

If you've spent time at your favorite Minnesota lake, chances are you're no stranger to aquatic plants. Maybe you've cast into lily pads looking for bass, watched minnows dart to safety in plant beds, or waded through a few plants while swimming.

Unfortunately, most people see aquatic plants as problems or weeds. But those so called "weeds" are an essential part of a lake's ecosystem.

Aquatic plants serve many important functions. They provide food for fish. Insect larvae, snails, and freshwater shrimp thrive in plant beds. And, many fish eat aquatic plants in addition to aquatic insects and crustaceans.

Many submerged plants produce seeds and tubers (roots), which are food for waterfowl. Submerged plants also provide habitat to many insect species and other invertebrates that are, in turn, important foods for brooding hens and migrating waterfowl.

Aquatic plants offer shelter for young fish. Bass, sunfish, and yellow perch usually nest in areas where vegetation is growing. And, Northern pike use aquatic plants, too, by spawning in marshy and flooded areas in early spring.

Water clarity and quality are better because of aquatic plants. Certain water plants, like bulrushes, can absorb and break down polluting chemicals. Nutrients used by aquatic plants for growth are not available to algae. Algae, which thrive on dissolved nutrients, can become a nuisance when too many submerged water plants are destroyed. Aquatic plants also maintain water clarity by preventing the re-suspension of bottom sediments.

Aquatic plants, especially rushes and cattails, dampen the force of waves and help prevent shoreline erosion. Submerged aquatic plants also weaken wave action and help stabilize bottom sediment.

The visual appeal of a lakeshore includes aquatic plants, which are a natural, critical part of a lake community. Plants such as water lilies, arrowhead, and pickerelweed have flowers or leaves that many people enjoy.

As a natural component of lakes, aquatic plants support the economic value of all lake activities. Residents and tourists spend more than \$1.5 billion each year to hunt, fish, camp, and watch wildlife on and around the state's lakes. Wild rice (an aquatic plant) alone is worth at least \$2 million to Minnesota's economy.

For more information on aquatic vegetation, visit <u>http://www.shorelandmanagement.org</u> or email the North Central Minnesota Lakes Project at <u>lakewaves@dnr.state.mn.us</u>.